Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer ; 23(1): 93, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720314

RESUMO

BACKGROUND: Circulating tumor cells (CTCs) hold immense promise for unraveling tumor heterogeneity and understanding treatment resistance. However, conventional methods, especially in cancers like non-small cell lung cancer (NSCLC), often yield low CTC numbers, hindering comprehensive analyses. This study addresses this limitation by employing diagnostic leukapheresis (DLA) to cancer patients, enabling the screening of larger blood volumes. To leverage DLA's full potential, this study introduces a novel approach for CTC enrichment from DLAs. METHODS: DLA was applied to six advanced stage NSCLC patients. For an unbiased CTC enrichment, a two-step approach based on negative depletion of hematopoietic cells was used. Single-cell (sc) whole-transcriptome sequencing was performed, and CTCs were identified based on gene signatures and inferred copy number variations. RESULTS: Remarkably, this innovative approach led to the identification of unprecedented 3,363 CTC transcriptomes. The extensive heterogeneity among CTCs was unveiled, highlighting distinct phenotypes related to the epithelial-mesenchymal transition (EMT) axis, stemness, immune responsiveness, and metabolism. Comparison with sc transcriptomes from primary NSCLC cells revealed that CTCs encapsulate the heterogeneity of their primary counterparts while maintaining unique CTC-specific phenotypes. CONCLUSIONS: In conclusion, this study pioneers a transformative method for enriching CTCs from DLA, resulting in a substantial increase in CTC numbers. This allowed the creation of the first-ever single-cell whole transcriptome in-depth characterization of the heterogeneity of over 3,300 NSCLC-CTCs. The findings not only confirm the diagnostic value of CTCs in monitoring tumor heterogeneity but also propose a CTC-specific signature that can be exploited for targeted CTC-directed therapies in the future. This comprehensive approach signifies a major leap forward, positioning CTCs as a key player in advancing our understanding of cancer dynamics and paving the way for tailored therapeutic interventions.


Assuntos
Biomarcadores Tumorais , Carcinoma Pulmonar de Células não Pequenas , Leucaférese , Neoplasias Pulmonares , Células Neoplásicas Circulantes , Fenótipo , Células Neoplásicas Circulantes/patologia , Células Neoplásicas Circulantes/metabolismo , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/diagnóstico , Análise de Célula Única/métodos , Transcriptoma , Transição Epitelial-Mesenquimal/genética , Perfilação da Expressão Gênica , Linhagem Celular Tumoral
2.
Biomaterials ; 276: 120919, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34419838

RESUMO

Peptide functionalized hyaluronic acid (HACF) cross-linked by cucurbit[8]uril (CB[8]), a new class of drug-delivery reservoirs, is used to enable improved drug bioavailability for glioblastoma tumors in patient-derived xenograft (PDX) models. The mechanical and viscoelastic properties of native human and mouse tissues are measured over 8 h via oscillatory rheology under physiological conditions. Treatment with drug-loaded hydrogels allowed for a significant survival impact of 45 % (55.5-80.5 days). A relationship between the type of PDX tumor formed-a consequence of the heterogeneic nature of GB tumors-and changes in the initial survival is observed owing to greater local pressure from stiffer tumors. These biocompatible and tailorable materials warrant use as drug delivery reservoirs in PDX resection models, where the mechanical properties can be readily adjusted to match the stiffness of local tissue and thus have potential to improve the survival of GB patients.


Assuntos
Glioblastoma , Animais , Encéfalo , Sistemas de Liberação de Medicamentos , Glioblastoma/tratamento farmacológico , Humanos , Ácido Hialurônico , Hidrogéis , Camundongos , Reologia
3.
Cancer Discov ; 11(9): 2216-2229, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33741711

RESUMO

ZFTA (C11orf95)-a gene of unknown function-partners with a variety of transcriptional coactivators in translocations that drive supratentorial ependymoma, a frequently lethal brain tumor. Understanding the function of ZFTA is key to developing therapies that inhibit these fusion proteins. Here, using a combination of transcriptomics, chromatin immunoprecipitation sequencing, and proteomics, we interrogated a series of deletion-mutant genes to identify a tripartite transformation mechanism of ZFTA-containing fusions, including: spontaneous nuclear translocation, extensive chromatin binding, and SWI/SNF, SAGA, and NuA4/Tip60 HAT chromatin modifier complex recruitment. Thereby, ZFTA tethers fusion proteins across the genome, modifying chromatin to an active state and enabling its partner transcriptional coactivators to promote promiscuous expression of a transforming transcriptome. Using mouse models, we validate further those elements of ZFTA-fusion proteins that are critical for transformation-including ZFTA zinc fingers and partner gene transactivation domains-thereby unmasking vulnerabilities for therapeutic targeting. SIGNIFICANCE: Ependymomas are hard-to-treat brain tumors driven by translocations between ZFTA and a variety of transcriptional coactivators. We dissect the transforming mechanism of these fusion proteins and identify protein domains indispensable for tumorigenesis, thereby providing insights into the molecular basis of ependymoma tumorigenesis and vulnerabilities for therapeutic targeting.This article is highlighted in the In This Issue feature, p. 2113.


Assuntos
Transformação Celular Neoplásica , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/genética , Ependimoma/genética , Neoplasias Supratentoriais/genética , Fatores de Transcrição/genética , Translocação Genética , Animais , Camundongos
4.
J Exp Biol ; 216(Pt 21): 4065-70, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23913950

RESUMO

In situations of increased energy demand and food intake, animals can often acclimate within several days. The intestine generally responds to elevated digestive demand by increasing in size. However, there is likely a limit to how quickly the intestine can grow to meet the new demand. We investigated the immediate and longer-term changes to intestinal properties of the mouse when suddenly exposed to 4°C. We hypothesized that paracellular permeability to nutrients would increase as part of an immediate response to elevated absorptive demand. We measured absorption of l-arabinose, intestinal size and gene expression of several tight junction proteins (claudin-2, claudin-4, claudin-15 and ZO-1) at three time points: pre-exposure, and after 1 day and 2 weeks of cold exposure. Cold exposure increased food intake by 62% after 2 weeks but intake was not significantly increased after 1 day. Intestinal wet mass was elevated after 1 day and throughout the experiment. Absorption of arabinose rose by 20% after 1 day in the cold and was 33% higher after 2 weeks. Expression of claudin-2 increased after 1 day of cold exposure, but there were no changes in expression of any claudin genes when normalized to ZO-1 expression. Our results indicate that intestinal mass can respond rapidly to increased energy demand and that increased paracellular permeability is also part of that response. Increased paracellular permeability may be a consequence of enterocyte hyperplasia, resulting in more tight junctions across which molecules can absorb.


Assuntos
Intestinos/fisiologia , Fator 1 de Elongação de Peptídeos/genética , Proteínas de Junções Íntimas/genética , Junções Íntimas/metabolismo , Absorção , Fenômenos Fisiológicos da Nutrição Animal , Animais , Arabinose/metabolismo , Temperatura Baixa , Digestão , Genes Essenciais , Masculino , Camundongos , Camundongos Endogâmicos ICR , Tamanho do Órgão , Fator 1 de Elongação de Peptídeos/metabolismo , Permeabilidade , Reação em Cadeia da Polimerase em Tempo Real , Proteínas de Junções Íntimas/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...